Exercise 10

Show that

$$
\int_{2}^{e+1}\left(\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\cdots\right) d x=1, x>1
$$

Solution

Inspecting the series in the parentheses, we see that it is geometric. The first term is

$$
a_{1}=\frac{1}{x},
$$

and the common ratio is

$$
r=\frac{1}{x}<1
$$

Consequently, the sum of the series is

$$
\begin{aligned}
S & =\frac{a_{1}}{1-r} \\
& =\frac{\frac{1}{x}}{1-\frac{1}{x}} \\
& =\frac{1}{x-1} .
\end{aligned}
$$

The integral that we have to evaluate then is

$$
\begin{aligned}
\int_{2}^{e+1} \frac{d x}{x-1} & =\left.\ln (x-1)\right|_{2} ^{e+1} \\
& =\ln e-\ln 1 \\
& =1
\end{aligned}
$$

Therefore,

$$
\int_{2}^{e+1}\left(\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\cdots\right) d x=1, x>1 .
$$

